GCSE (9-1)

Mathematics

J560/06: Paper 6 (Higher tier)
General Certificate of Secondary Education

Mark Scheme for November 2019

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

Annotations used in the detailed Mark Scheme.

Annotation	
\checkmark	Correct
x	Incorrect
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working (after correct answer obtained), provided method has been completed
M0	Method mark awarded 0
M1	Method mark awarded 1
M2	Method mark awarded 2
A1	Accuracy mark awarded 1
B1	Independent mark awarded 1
B2	Independent mark awarded 2
MR	Misread
SC	Special case
\wedge	Omission sign

These should be used whenever appropriate during your marking.
The M, A, B etc annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks.
It is vital that you annotate these scripts to show how the marks have been awarded.
It is not mandatory to use annotations for any other marking, though you may wish to use them in some circumstances.

Subject-Specific Marking Instructions

1. $\quad \mathbf{M}$ marks are for using a correct method and are not lost for purely numerical errors.

A marks are for an accurate answer and depend on preceding M (method) marks. Therefore M0 A1 cannot be awarded.
B marks are independent of \mathbf{M} (method) marks and are for a correct final answer, a partially correct answer, or a correct intermediate stage.
SC marks are for special cases that are worthy of some credit.
2. Unless the answer and marks columns of the mark scheme specify \mathbf{M} and \mathbf{A} marks etc, or the mark scheme is 'banded', then if the correct answer is clearly given and is not from wrong working full marks should be awarded.

Do not award the marks if the answer was obtained from an incorrect method, ie incorrect working is seen and the correct answer clearly follows from it.
3. Where follow through (FT) is indicated in the mark scheme, marks can be awarded where the candidate's work follows correctly from a previous answer whether or not it was correct.

Figures or expressions that are being followed through are sometimes encompassed by single quotation marks after the word their for clarity, eg FT $180 \times\left(\right.$ their ' 37 ' +16), or FT $300-\sqrt{(}$ their ' $5^{2}+7^{2}$ '). Answers to part questions which are being followed through are indicated by eg FT $3 \times$ their (a).

For questions with FT available you must ensure that you refer back to the relevant previous answer. You may find it easier to mark these questions candidate by candidate rather than question by question.
4. Where dependent (dep) marks are indicated in the mark scheme, you must check that the candidate has met all the criteria specified for the mark to be awarded.
5. The following abbreviations are commonly found in GCSE Mathematics mark schemes.

- cao means correct answer only.
- figs 237, for example, means any answer with only these digits. You should ignore leading or trailing zeros and any decimal point eg

$$
237000,2.37,2.370,0.00237 \text { would be acceptable but } 23070 \text { or } 2374 \text { would not. }
$$

- isw means ignore subsequent working (after correct answer obtained)
- nfww means not from wrong working.
- oe means or equivalent.
- rot means rounded or truncated.
- seen means that you should award the mark if that number/expression is seen anywhere in the answer space, including the answer line even if it is not in the method leading to the final answer
- soi means seen or implied.

6. Make no deductions for wrong work after an acceptable answer unless the mark scheme says otherwise, indicated for example by the instruction 'mark final answer'.
7. As a general principle, if two or more methods are offered, mark only the method that leads to the answer on the answer line. If two (or more) answers are offered, mark the poorer (poorest).
8. When the data of a question is consistently misread in such a way as not to alter the nature or difficulty of the question, please follow the candidate's work and allow follow through for \mathbf{A} and \mathbf{B} marks. Deduct 1 mark from any \mathbf{A} or \mathbf{B} marks earned and record this by using the MR annotation. M marks are not deducted for misreads. Unless the question asks for an answer to a specific degree of accuracy, always mark at the greatest number of significant figures even if this is rounded or truncated on the answer line. For example, an answer in the mark scheme is 15.75 , which is seen in the working. The candidate then rounds or truncates this to $15.8,15$ or 16 on the answer line. Allow full marks for the 15.75 .
9. If the correct answer is seen in the body and the answer given in the answer space is a clear transcription error allow full marks unless the mark scheme says 'mark final answer' or 'cao'. Place the annotation \checkmark next to the correct answer.

If the answer space is blank but the correct answer is seen in the body allow full marks. Place the annotation \checkmark next to the correct answer.
If the correct answer is seen in the working but a completely different answer is seen in the answer space, then accuracy mar ks for the answer are lost. Method marks would still be awarded. Use the M0, M1, M2 annotations as appropriate and place the annotation \times next to the wrong answer.
10. Ranges of answers given in the mark scheme are always inclusive.
11. For methods not provided for in the mark scheme give as far as possible equivalent marks for equivalent work. If in doubt, consult your Team Leader
12. Anything in the mark scheme which is in square brackets [...] is not required for the mark to be earned, but if present it must be correct.

	st		Answer	Marks	Part marks and guidance	
8			7.2 oe nfww	4	M2 for $\frac{1}{3} \times 5 \times 5 \times \frac{h}{2}=30$ oe or $\frac{1}{3} \times 5 \times 5 \times h=60$ oe or $\frac{1}{3} \times 5 \times 5 \times h=30$ oe or M1 for $\frac{1}{3} \times 5 \times 5\left[\times \frac{h}{2}\right.$ or $\times h$] AND A1dep for [h or $\left.\frac{h}{2}=\right] 3.6$ or 7.2	Condone use of h or other letter as height of pyramid $\text { M2 implied by } \frac{30}{\frac{1}{3} \times 5 \times 5} \text { or } \frac{60}{\frac{1}{3} \times 5 \times 5} \text {, }$ perhaps in stages $\text { soi } 8.3[3 \ldots] \text { or } \frac{25}{3}$ A1 dep on their M2 Note: using $V=60$ should lead to final answer 7.2, and score 4 marks. If spoilt (e.g final answer 14.4, then M2A1)
9	a		$\begin{aligned} & 2.5 \\ & 5 \end{aligned}$	3	$\begin{aligned} & \text { B2 for }[k=] 2.5 \\ & \text { or } \mathbf{B 1} \text { for }\binom{4}{2} \\ & \text { B1 for }[n=] 5 \end{aligned}$	
9	b			$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Correct arrow and label $\binom{5}{5}$ or $\mathbf{a}+2 \mathbf{b}$ Correct arrows on a and 2b Correct labels on \mathbf{a} and $\mathbf{2 b}$	Accept single arrowhead

Question		Answer	Marks	Part marks and guidance	
10	a	$4+11+8=23$ seen	1		Accept written as a sum in a column
	b	e.g. First column: $n+(n+7)+(n+6)=3 n+13$ Second column: $\begin{aligned} & (n+1)+(n+8)+(n+5)=3 n+14 \\ & (3 n+14)-(3 n+13)=1 \end{aligned}$	5	B2 for consistent algebraic terms for at least first two columns of the grid or B1 for at least 3 algebraic terms for consecutive numbers seen AND M1 for algebraic sum of first or second column shown M1 for algebraic sum of first and second columns shown and correctly simplified A1 for sum of second column - sum of first column = 1 calculated or explained from correct working or M1 for difference of one pair of algebraic terms from first and second column shown M1 for differences of two further pairs of algebraic terms from first and second column, with all three pairs correctly simplified A1 for each difference found as +1 or -1 oe and summed/explained to a difference of +1 . Correct algebra and reasoning throughout If $\mathbf{0}$ scored, allow SC1 for a correct numerical or descriptive example using either method and stating an overall difference of 1	$\begin{aligned} & \text { e.g. } n,(n+7),(n+6) \\ & \text { and }(n+1),(n+8),(n+5) \\ & \text { e.g. } n,(n+1),(n+2) \end{aligned}$ e.g. $n+(n+7)+(n+6)$ or in column $\text { e.g. } n+(n+7)+(n+6)=3 n+13$ A1 for e.g. $3 n+14$ and $3 n+13$ and "second column is 1 more than the first" but AO for e.g. $3 n+14$ and $3 n+13$ and "difference of 1" or for $(3 n+14)-3 n+13=1$ e.g. "the difference between $n+1$ and n is 1 " e.g. " $n+1$ is 1 more than n " Condone poor use of brackets for both M marks

Question			Answer	Marks	Part marks and guidance	
11	a	i	60	3	B2 for [$u_{4}=$] 15 M1 for 5×6 - 15	
		ii	4.2 oe	3	$\text { M2 for }(6+15) \div 5$ or M1 for $6=5 u_{2}-15$ or $u_{2}=\frac{u_{3}+15}{5}$	Allow $6=5 k-15$ or $u_{n}=\frac{u_{n+1}+15}{5}$
	b		$\left[u_{2}=\right] 5 \times 3.75-15=3.75$ Since $u_{1}=u_{2}$, all terms are equal	$\begin{gathered} 1 \\ 1 \text { dep } \end{gathered}$		Must see calculation and answer Accept "every term is 3.75 "

Question		Answer	Marks	Part marks and guidance	
15	a	e.g. $\begin{aligned} & 300-450: \\ & 150 \times 70=10500 \text { [parcels] } \\ & 450-700: \\ & 250 \times 50=12500 \text { [parcels] } \end{aligned}$ [Zoe is] not correct oe	4	M2 for 150×70 and 250×50 or M1 for 150×70 or 250×50 AND A1 for 10500 or 12500 AND A1 10500 and 12500 and conclusion Alternative method, for example: M1 for 150×70 soi by 10500 A1 for 10500 AND M1 for their $10500 \div 250$ A1 for height of 450-700 bar is more than 42 so Zoe is not correct If $\mathbf{0}$ scored then SC2 for 10500 and 12500 with no method shown or SC3 for 10500 and 12500 with no method shown and correct conclusion	For full marks, calculations must be shown, together with a conclusion. Allow other equivalent methods involving consistent area calculations.
	b	Bar of height 130 drawn for 50-100g	2	M1 for $6500 \div 50$ soi by 130	
	C	The weights of parcels may not be evenly distributed [between 200 g and 300 g] oe	1		e.g. uneven distribution of weights

Question		$50 \text { nfww }$		Part marks and guidance	
16	a		4	```M3 for \(\mathrm{ABC}=25\) or \(\mathrm{B}=25\) or for \(\mathrm{AOB}=150\) and \(\mathrm{COB}=160\) or M2 for \(\mathrm{ABO}=15\) and \(\mathrm{CBO}=10\) or for \(\mathrm{AOB}=150\) or for \(\mathrm{COB}=160\) or M1 for \(\mathrm{ABO}=15\) or \(\mathrm{CBO}=10\) \\ If \(\mathbf{0}\) scored, \(\mathbf{S C 1}\) for AOC \(=2 \times\) [their] ABC stated or applied or for 360 - their AOB - their COB applied``` Alternative method to find $\mathrm{AOC}=x$ M3 for $\frac{x}{2}+2\left(\frac{180-x}{2}\right)+15+10=180 \text { oe }$ OR M1 for OAC $=O C A=\frac{180-x}{2}$ and M1 for $\mathrm{ABC}=\frac{x}{2}$ Alternative method to find $\mathrm{AOC}=x$ M3 for $360-\mathrm{x}+10+15+\frac{x}{2}=360$ OR M1 for [reflex] AOC = $360-x$ and M1 for $\mathrm{ABC}=\frac{x}{2}$	Throughout, angles could be on diagram
					SCO for angle at centre $=2 \times$ angle at circumference

Question		Answer e.g. $\mathrm{DEF}=180-(43+55)=82$ angles in a triangle HDF $=\mathrm{DEF}=82$ alternate segment theorem OR GDE $=55$ alternate segment theorem HDF $=180-(43+55)=82$ angles on a straight line		Part marks and guidance M2 for [DEF =] 180 - (43 + 55) soi by DEF $=82$ and angles in a triangle or M1 for [DEF =] 180 - ($43+55$) soi by DEF $=82$ AND M2 for HDF = DEF [= 82] and alternate segment theorem or M1 for HDF = DEF [= 82] Alternative method M2 for GDE $=55$ and alternate segment theorem or M1 for GDE = 55 AND M2 for [HDF =] 180 - ($43+55$) [= 82] and angles on a straight line or M1 for [HDF =] 180 - (43 + 55) [= 82]	
	b				Allow full marks if 3 letter angle notation not used provided their angles are unambiguously defined (eg. labelled on the diagram and referred to in working using their labels) Note: $180-(43+55)$ with no other creditable working or reasoning scores M1
17	a	$(10,11)$	2	B1 for a ray drawn through either point A and $(6,7)$ or point B and $(2,9)$	
	b	-2	2	B1 for 2	
	c	$(4,1)$	2	B1 for ($4, k$) or ($k, 1$)	

OCR (Oxford Cambridge and RSA Examinations)
 The Triangle Building
 Shaftesbury Road
 Cambridge
 CB2 8EA
 OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

